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ASYMMETRY OF THERMOGRAVITATIONAL CONVECTION 
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The na ture  and intensi ty  of  convect ive  mot ion in a r ec t angu la r  region with moving boundaries  
of the sol idif icat ion f ront  a r e  studied by the f in i te -d i f fe rence  method.  

T h e r m a l  convect ion in regions  with moving boundar ies  of the sol idif icat ion f ront ,  i ts  na ture ,  and intensi ty 
have an impor tan t  effect  on heat and m a s s  t r a n s f e r  in the liquid phase ,  on the redis t r ibut ion  of an admixture  in 
the solid c r u s t ,  and on the m a c r o s t r u c t u r e  of the finished cas t ing .  The t h r ee -d imens iona l  p rob lem of unsteady 
t h e r m a l  convect ion in a r ec t angu la r  p r i s m  was formula ted  and solved in [1]. The plane case  of t he rma l  con-  
vect ion was analyzed in [2] and that  fo r  a cy l indr ica l  reg ion ,  in [3]. The cons iderable  d ivergence  in the ca l -  
culated r e su l t s  and in some  c a s e s  the contradic t ion of the conclusions indicate  the necess i ty  of fu r the r  study of 
this  p rob lem with the a i m  of c lar i fy ing the de te rmin ing  f ac to r s  of the p roce s s  of t h e r m a l  convection.  

A region of r ec tangu la r  c r o s s  sec t ion ,  semiinf ini te  along the coordinate  *?2, was chosen for  study in the 
p r e s e n t  r e p o r t .  The region is  fi l led with a s t a t ionary  homogeneous mel t  with an init ial  t e m p e r a t u r e  T o higher 
than i ts  c rys t a l l i za t ion  t e m p e r a t u r e .  

P roceed ing  f r o m  the assumpt ion  that  the ve r t i c a l  axis 073 is the axis of s y m m e t r y  of the convect ive 
s t r e a m s ,  one of the halves  of the region under  cons idera t ion  is r ep re sen t ed  in Fig.  1. The dimensions  in the 
d i a g r a m  a re  r e l a t ive ,  with the hor izonta l  width being taken as the cha rac t e r i s t i c  s i ze ,  so that l~ = 1. 

At a t ime  z > 0 the t e m p e r a t u r e  of the boundar ies  of the region is abrupt ly reduced to the c rys ta l l i za t ion  
t e m p e r a t u r e ,  as a r e su l t  of which the solid phase  is formed at the pe r iphe ry .  The solidif icat ion front  is a s -  
sumed to be plane.  The d imensions  of the Hquid phase  along the coordinates  Vl and 773 and the th ickness  of the 
top c r u s t  a r e  a s s u m e d  to be known functions of t ime:  

~, = 1 - kl V ~ ;  ~3 = 13 - k2 V Y ~ ,  H = k3 V % ,  (1) 

where  k 1, k2, and k 3 a r e  sol idif icat ion coeff ic ients .  

In the Bouss inesq  approximat ion  the ini t ial  s y s t e m  of equations in d imens ion less  vec to r  f o r m  is wri t ten 
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Fig. 1. Diagram of the c rys ta l l iz ing  region.  

1 oP 
~- (Vv)y = - -  Va q- vV q- ~e Gr O, 

Pr 0 Fo 
00 

-0 Fo ff Pr (Vv) 0 = vO, 

vY = o. 

The following boundary conditions a re  used for  the solution of sys tem (2)-(4): 

(2) 

(a) 

(4) 

(~ = 1 ,  V 1 = V 3 = 0 a t  Fo = 0; 

0OO =O--V a = V l = 0 a t ~ l  =0;  

| =V 1 =V a = 0 a t v l  = q ,  '33 =H,  and'3a =an. 
Region of variat ion of the var iables :  0 -< ~1 -< el; 0 _< '33 -< ca. 

(5) 

The p resence  of moving boundaries of the solidification front  in the liquid phase considerably complicates  
the problem and leads to cer ta in  additional difficulties caused by the numer ica l  rea l iza t ion of the formulated 
problem on a computer .  In par t i cu la r ,  the choice of a coordinate grid in a region which var ies  with t ime is dif-  
ficult when f in i te -d i f ference  sys tems  a re  used. 

T h e r e f o r e ,  it is des i rable  to change to var iables  in sys tem (2)-(4) such that the region of investigation 
remains  constant during the ent i re  in terva l  of solidification of the liquid zone. For  this purpose we introduce 
the new var iables  g~ and g3 through the equations 

~i = ~1~; ~a-- ~b--H 
g I 8 a - -  H 

In this case  0 _< gl -< 1 and 0 _5_< ga -< 1, i . e . ,  the t ransi t ion f rom a rectangular  region with moving bound- 
a r ies  to the region of a unit square  is accomplished with the var iables  gl and ga. 

Considering the plane case  of the problem,  we introduce the s t r e am  function ~, which identically sa t i s -  
fies the continuity equation, and the cur l  of the velocity ~ = cur l  ~ .  After  per forming the appropr ia te  mathe-  
mat ica l  t r ans fo rmat ions ,  we write sys tem (2)-(4) in the var iables  gl and ga in the form 

0r I [(% - H )  0~a ~le~] 0~1 (ea H ) [ e l  0[1 
O F--~ + - -  Pr 0W" &p 1 Pr OT 

E1 ~ - -  . 

- -  ~a (e a - -  H') if- H' ] 3.__~ ~ Pr Ale p Pr Gr 0O . 

O0 ~_1 [ Pr 01F ] O0 1 [ P r  O~ ] 
0Fo + ~'q ~ G _ H , ) +  H, ao (e 8 -  H) O~a 0~1 ( e ~ . H )  el 3r 0r 

- - = A 1 0 ;  

(6) 

(7) 

A~R s = _ % (8) 
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Fig.  2. I s o t h e r m s  of liquid phase  (a) and isol iues  of s t r e a m  
function (b). Gr  = 0.22 �9 105; P r  = 0.224; l 3 = 4. 

Here  

Oel �9 e~= Oe3 �9 H ' =  OH . AI= 1 02 1 0 ~- 
- - - - '  - - - - '  ' -~ 0 ~  ' ~ -  ~" e~ = 0 Fo 0 Fo 0 Fo e, (e~-- H) 2 0 ~  

The equations obtained fo r  the cur l  of the veloci ty  (6) and the t e m p e r a t u r e  (7) have a somewhat  compl i -  
cated c h a r a c t e r  in compari,  son with the c l a s s i ca l  equations (in [2], fo r  example}. However ,  such a compl i ca -  
t ion is just if ied by the fact  that  the necess i ty  of reca lcu la t ing  the p a r a m e t e r s  at the nodes of the d i sc re t e  grid 
when d i f fe rence  s y s t e m s  a r e  used drops  out,  s ince the choice of the va r i ab l e s  ~ 1 and ~3 re ta ins  a unit region 
in the en t i re  in t e rva l  of inves t igat ion and the c rys ta l l i za t ion  f ront  r ema ins  at  the boundary of the unit region.  

To r e c o r d  the equations in f in i te -d i f fe rence  fo rm we introduce the coordinate  gr id  and t ime  grid through 
the equations 

{ I t i , m  1 ,2  ' J M }  ~ ~x---- ih; ~3 --= mh; h -~ J M 

{ ~ '~  Ah~ " O < A ~ I ;  ]=0 '  1, 2"" } " Fo~ = Fo=  "rj, "r= - ~ ,  
1 

A s y s t e m  with separa t ion  of the equations with r e spec t  to the coordinates  ~1 and Ca was used for  the 
f in i te -d i f fe rence  approximat ion  of s y s t e m  (6)-(7). The in tegro- in te rpo la t ion  method [4] is  applied to the s epa -  
ra ted  equations on the bas i s  of the r e q u i r e m e n t  of s tabi l i ty  of the solut ion,  and the method of va r i ab le  d i rec t ions ,  
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Fig. 3. Dependence of velocity component V 3 in ascending (sol- 
id line) and descending flows (dashed line) and of temperature 
of melt  | on t ime Fo. Numbers  on curves  a re  relative height 
of cavity; Gr = 0.22o105; P r  = 0~ 

for which the t r i a l - run  equations and coefficients a re  determined in accordance  with the same repor t ,  was 
chosen for  the numerica l  rea l iza t ion on a Dnepr-21 computer .  

The calculation procedure  was set up as follows. The values of the tempera ture  along the rows of the 
coordinate grid were calculated in the f i rs t  t ime half -s tep and the values along the columns were calculated 
in the second. The values of the curl  of the velocity and the s t r eam function f rom the preceding t ime were 
used in this case .  F rom the calculated values of the tempera ture  and the initial values of the s t r eam function 
(for the same two t ime half-steps) the values of the curl  of the velocity were calculated at the grid nodes,  
f rom which the values of the s t r eam function were determined by i terat ion of the Poisson equation (8). After 
this the t ime cycle was closed and in the case  of complete solidification of the cavity it was ended. 

The calculation was conducted on a grid of w h = 16 • 16 with a t ime coefficient A = 0.3 and with a fixed 
Grashof  number  (Gr = 0.22" 105). The solidification coefficients entering into Eqs.  (1) were taken as the same 
and equaled k 1 = k 2 = k~ = 1.25, which cor responds  to the solidification of a cavity with a charac te r i s t i c  size 
~0 = 0.3 m in approximately 4 h. 

We studied the effect of the relat ive height of the cavity,  the thermophysica l  p roper t i es  of the medium, 
and the initial overheating of the melt  on the pa ramete r s  of the thermal  convection. 

Figure 2 charac te r i zes  the qualitative pat tern and dynamics of the development of the rmal  convection 
with t ime for  a region with a relat ive height 13 = 4. 

In the initial period of solidification upon the instantaneous cooling of the walls of the mold the maximum 
tempera tu re  gradient  develops in the region of the melt  near  the walls (Fig. 2a, Fo = 0.03). The melt  which is 
located near  the solidifying surface ,  becoming heavier ,  descends into the bottom part  of the ingot, thereby se t -  
ting the remaining liquid metal  into motion upward along the axis of the cavity.  The zone of "descending" 
flows corresponding to this t ime is considerably sma l l e r  than the zone of "ascending" flows (Fig. 2b, Fo = 0.03). 

Reorganizat ion of the t empera tu re  field of the liquid phase takes place as the thermal  convection develops.  
The hotter  l ayers ,  ca r r i ed  along by the convective motion, move to the cool walls and, being cooled while mov-  
ing along them,  descend into the bottom part  of the ingot. The displacement of the thermal  center  toward the 
upper boundary occurs  as a resul t  of this (Fig. 2a, Fo = 0.075, 0.13, 0.2)~ The dynamics of the t empera tu re  
field act  in a corresponding way on the velocity field of the liquid region. As the size of the liquid zone de-  
c r e a s e s ,  the center  of the velocity vortex falls behind the the rmal  center  in moving upward from the side and 
bottom boundaries so that the zones of ascending and descending flows become equalized (Fig. 2b, Fo = 0.075, 
0.13, 0.2). 

The t ime distribution of the velocity component V3 in the ascending and descending flows of melt  and of the 
the t empera tu re  | for regions with different relat ive heights l 3 are  presented in Fig. 3. 
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Fig. 4. Effect of Prandt l  numbers  on unsteadiness of t he rmograv -  
itational convection. Solid line: velocity component V3; dashed 
line: V1; | t empera tu re .  Numbers  1, 2, and 3 correspond to 
Prandt l  numbers  P r  = 8.8, 0.88, and 0.224; Gr = 0.22-105; 13= 4. 

As the resu l t s  of the calculation show, regard less  of the height of the crystal l iz ing cavity the entire p ro -  
cess  of the rma l  convection can be divided into two s tages:  a stage of acce lera t ion  of the melt  and one of slow- 
ing of the rate  of convective motion. 

It was noted ea r l i e r  that a spatial  reorganizat ion of the t empera tu re  field takes place in the initial period 
of solidification. This same period is charac te r i zed  by the r i se  of the convection veloci t ies .  The duration and 
the maximum value of the velocit ies in the acce lera t ion  stage essent ial ly  depend on the relat ive height l 3 of the 
cavity.  As it i nc reases  the intensity of the motion grows with a simultaneous inc rease  in the duration of the 
acce lera t ion  of the mel t .  It should be noted that the development of the convective motion in the ascending and 
descending flows does not take place in the same  way. While the motion develops a lmost  instantly in the region 
near  the wall,  in the axial par t  of the cavity it develops with a cer ta in  delay. 

The second stage,  more  prolonged,  general ly  speaking, is charac te r ized  by a dec rease  in the velocity 
of the motion.  The resul ts  of the calculation show that the total duration of the convective motion of the liquid 
core  of the ingot is entirely due to the presence  of overheating in the melt  (Fig. 3). With the removal  of the 
overheat ing the intensity of the the rma l  convection dec rea se s ,  asymptotical ly approaching zero.  

The effect of the Prandt l  number  on the nature of the thermal  convection is represented in Fig. 4. As 
the resul ts  of the calculation show, var ia t ion in the Prandt l  number  in the range f rom Pr  = 0.224 to P r  = 8.8 
has a weak effect on the maximum velocit ies  reached by the melt  and acts  main ly  on the duration of the the r -  
ma l  convection. 

An analysis  of the initial equations shows that in the case  of smal l  Prandtl  numbers (Pr << 1) the equation 
of heat and mass  t r ans f e r  can be l inearized on account of the convective t e rm while the equation of motion can 
be l inearized on account of the convective and viscous t e rms .  In this case the velocit ies of thermal  convection 
depend on the Rayleigh number ,  while the mechanism of molecular  heat conduction affects the t empera tu re  
distribution. 

For  l a rge r  Prandt l  numbers  one can neglect the local t ime derivative in the equations of motion and heat 
t r ans fe r .  A quasisteady regime of thermal  convection occurs  in this case .  The determining c r i t e r i a  of the 
intensity of the convective motion become the Grashof  number and the convective t e rms ,wh ich  introduce the 
essent ia l  nonlinearity into the p rocess  of thermal  convection. 

It should be noted that the conclusion drax~z~ in [1] that the regime of thermal  convection is "quasisteady" 
is confirmed by the resul ts  of the presen t  work only for  large Prandtl  numbers .  
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NOTATION 

T, t ime;  T,  t e m p e r a t u r e  of mel t ;  To, ini t ial  t e m p e r a t u r e ;  Tc ,  c rys ta l l i za t ion  t e m p e r a t u r e  of liquid; ~,  
m 

s t r e a m  function; ~a, cur l  of velocity;  v, coefficient  of k inemat ic  v i scos i ty ;  a ,  coefficient  of t h e r m a l  diffusivity;  
:~0, c h a r a c t e r i s t i c  s ize  of region; ~g, unit vec to r  of 0~ 3 axis ;  l 3, re la t ive  height of cavity;  el, re la t ive  width of 
liquid zone (i = 1, 3); w h, coordinate  g r id  of region; h, d is tance between nodes of coordinate  grid;  A, t ime 
mul t ip l ie r ;  To - -  Tc ,  c h a r a c t e r i s t i c  t e m p e r a t u r e  d i f ference;  p = pt~02, cha r ac t e r i s t i c  p r e s s u r e ;  R = P r G r ,  R a y -  
leigh number ;  7? i = x i /~  0, d imens ion less  coordinates  (i = 1, 3) ; | = (T - - T c ) / ( T  0 - -T  c), d imens ionless  t e m p e r -  
a ture ;  r =p/ fJ ,  dimens ion less  p r e s s u r e ;  Fo = T/~, d imens ion less  t ime  (Four ier  number) ;  ~o = v/:}o, c h a r a c t e r -  
i s t ic  veloci ty;  ? = ~2o/a , c h a r a c t e r i s t i c  t ime;  P r  = v / a ,  Prandt l  number ;  Gr  = qfi(T 0 - - T c ) ~ / v  2, Grashof  number .  

I. 
2. 

3. 

4. 
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U N S T E A D Y  C O N V E C T I V E  H E A T  T R A N S F E R  

IN P O T E N T I A L  F L O W  

P .  S.  C h e r n y a k o v  UDC536.25 

Analyt ical  re la t ions  a re  obtained fo r  the unsteady t e m p e r a t u r e  field in potential  flow o v e r  a 
f lat  plate and a cyl inder .  

Works [1-3] have examined s ta t ionary  forced convection in potent ial  flow of a liquid over  bodies.  

The p re sen t  pape r  de te rmines  the unsteady t e m p e r a t u r e  f ields in longitudinal flow over  a f iat  plate with 
boundary conditions of the f i r s t  and second kinds,  with and without allowance for  t h e r m a l  radiat ion and motion 
of the cyl inder  in the flow with boundary conditions of the f i r s t  kind. This type of p rob lem is  desc r ibed  by the 
equations for  the fluid t e m p e r a t u r e  T,  the veloci ty potent ial  q~, and the p r e s s u r e  p: 

a~ = 0, (].) 

0__T_T + (grad T, grad r = aAT, (2) 
Ot 

Ocp -~ 
P -  Po - -  0.5p (grad ~p)2 _ p -~- _ p (g, r)  (3) 

and initial and boundary conditions on the body surface 

a_~% = U, (4) 
an 

T (x, O)= To (x), T[-~ = [ (x,, t), )~ ~ -~es= g (xv t), 
~ c ~  ( 5 )  ~OT I = On x%s ~ (T'iTcs - -  T~), TIF ~ ~ -- T| 

We a s sume  that  the the rmophys ica l  p r o p e r t i e s  of the liquid a re  independent of t e m p e r a t u r e  and p r e s s u r e  
and that a s im i l a r i t y  t r ans fo rma t ion  xi = '~Yi  has been der ived which resu l t s  in the coefficient  of AT reducing 
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