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ASYMMETRY OF THERMOGRAVITATIONAL CONVECTION

P. F. Zavgorodnii, I. L. Povkh, UDC 536.252:532,781
G. M. Sevost'yanov, and N. S. Sidel'nikova

The nature and intensity of convective motion in a rectangular region with moving boundaries
of the solidification front are studied by the finite-difference method.

Thermal convection in regions with moving boundaries of the solidification front, its nature, and intensity
have an important effect on heat and mass transfer in the liquid phase, on the redistribution of an admixture in
the solid crust, and on the macrostructure of the finished casting. The three-dimensional problem of unsteady
thermal convection in a rectangular prism was formulated and solved in [1]. The plane case of thermal con-
vection was analyzed in [2] and that for a cylindrical region, in [3]. The considerable divergence in the cal-
culated results and in some cases the contradiction of the conclusions indicate the necessity of further study of
this problem with the aim of clarifying the determining factors of the process of thermal convection.

A region of rectangular cross section, semiinfinite along the coordinate 7,, was chosen for study in the
present report., The region is filled with a stationary homogeneous melt with an initial temperature T, higher
than its crystallization temperature.

Proceeding from the assumption that the vertical axis 075 is the axis of symmetry of the convective
streams, one of the halves of the region under consideration is represented in Fig, 1. The dimensions in the
diagram are relative, with the horizontal width being taken as the characteristic size, so that [, =1,

At a time T > 0 the temperature of the boundaries of the region is abruptly reduced to the crystallization
temperature, as a result of which the solid phase is formed at the periphery. The solidification front is as-
sumed to be plane. The dimensions of the liquid phase along the coordinates ny and n; and the thickness of the
top crust are assumed to be known functions of time:

e, =1 —k, VFo; &, = l,—k,VFo, H=Fk,VFo, 1)
where k,, ky, and kg are solidification coefficients.

In the Boussinesq approximation the initial system of equations in dimensionless vector form is written
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Fig. 1., Diagram of the crystallizing region.
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The following boundary conditions are used for the solution of system (2)~(4):

® :1, VI :V3:03-t Fo 20;
o8
__:§y3 =V, =0atn =0;
ony  ony (5)
e :V1 :V3 =0 at T =€y ZI‘I, and N3 = E3e
Region of variation of the variables: 0 =1y = g;; 0 = 7; =< &;.

The presence of moving boundaries of the solidification front in the liquid phase considerably complicates
the problem and leads to certain additional difficulties caused by the numerical realization of the formulated
problem on a computer. In particular, the choice of a coordinate grid in a region which varies with time is dif-
ficult when finite-difference systems are used.

Therefore, it is desirable to change to variables in system (2)~{4) such that the region of investigation
remains constant during the entire interval of solidification of the liquid zone. For this purpose we introduce
the new variables ¢, and {4 through the equations

M. . Ms—H
Cl 81 ? C3 83——H .

In this case 0 =¢; =1and 0 =¢, =1, i.e., the transition from a rectangular region with moving bound-
aries to the region of a unit square is accomplished with the variables £y and Z,.

Considering the plane case of the problem, we introduce the stream function ¥, which identically satis-
fies the continuity equation, and the curl of the velocity ¢ =curl V. After performing the appropriate mathe-
matical transformations, we write system (2)~(4) in the variables ¢y and £ in the form

op R Pr oY —ge'] op 1 [&'_ ovr
0Fo ' & |—H) 05, '] ot  (@—Ble g
, dg Pr Gr 90
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The equations obtained for the curl of the velocity (6) and the temperature (7) have a somewhat compli-
cated character in comparison with the classical equations (in {2], for example). However, such a complica-
tion is justified by the fact that the necessity of recalculating the parameters at the nodes of the discrete grid
when difference systems are used drops out, since the choice of the variables ¢, and ¢; retains a unit region
in the entire interval of investigation and the crystallization front remains at the boundary of the unit region.

To record the equations in finite-difference form we introduce the coordinate grid and time grid through
the equations

o
= o= i = mh; b= — ——;i,m=1,2,.‘.,J=M}.
(Y {€1 thy Ls 7 M

A

2
S 0<A<l; j=0, 1,2..)

f N
Fo, = {Fo= 2 j, T= . St
o i o : T, T 1 |
A system with separation of the equations with respect to the coordinates {; and {; was used for the

finite-difference approximation of system (6)~(7). The integro-interpolation method [4] is applied to the sepa-
rated equations on the basis of the requirement of stability of the solution, and the method of variable directions,
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Fig. 3. Dependence of velocity component V; in ascending (sol-
id line) and descending flows (dashed line) and of temperature
of melt ® on time Fo., Numbers on curves are relative height
of cavity; Gr = 0.22-10% Pr = 0.224.

for which the trial-run equations and coefficients are determined in accordance with the same report, was
chosen for the numerical realization on a Dnepr-21 computer,

The calculation procedure was set up as follows. The values of the temperature along the rows of the
coordinate grid were calculated in the first time half-gtep and the values along the columns were calculated
in the second. The values of the curl of the velocity and the stream function from the preceding time were
used in this case. From the calculated values of the temperature and the initial values of the stream function
(for the same two time half-steps) the values of the curl of the velocity were calculated at the grid nodes,
from which the values of the stream function were determined by iteration of the Poisson equation (8). After
this the time cycle was closed and in the case of complete solidification of the cavity it was ended.

The calculation was conducted on a grid of wy =16 X 16 with a time coefficient A = 0.3 and with a fixed
Grashof number (Gr = 0.22-10%. The solidification coefficients entering into Eqs. (1) were taken as the same
and equaled ky =k, =k; =1.25, which corresponds to the solidification of a cavity with a characteristic size
X, = 0.3 m in approximately 4 h.

We studied the effect of the relative height of the cavity, the thermophysical properties of the medium,
and the initial overheating of the melt on the parameters of the thermal convection.

Figure 2 characterizes the qualitative pattern and dynamics of the development of thermal convection
with time for a region with a relative height 7; = 4.

In the initial period of solidification upon the instantaneous cooling of the walls of the mold the maximum
temperature gradient develops in the region of the melt near the walls (Fig. 2a, Fo = 0.03). The melt which is
located near the solidifying surface, becoming heavier, descends into the bottom part of the ingot, thereby set-
ting the remaining liquid metal into motion upward along the axis of the cavity, The zone of "descending"
flows corresponding to this time is considerably smaller than the zone of "ascending" flows (Fig. 2b, Fo = 0.03).

Reorganization of the temperature field of the liquid phase takes place as the thermal convection develops.
The hotter layers, carried along by the convective motion, move to the cool walls and, being cooled while mov~
ing along them, descend into the bottom part of the ingot. The displacement of the thermal center toward the
upper boundary occurs as a result of this (Fig. 2a, Fo = 0.075, 0.13, 0.2). The dynamics of the temperature
field act in a corresponding way on the velocity field of the liquid region. As the size of the liguid zone de-
creases, the center of the velocity vortex falls behind the thermal center in moving upward from the side and
bottom boundaries so that the zones of ascending and descending flows become equalized (Fig. 2b, Fo = 0.075,
0.13, 0.2).

The time distribution of the velocity component V; in the ascending and descending flows of melt and of the
the temperature ® for regions with different relative heights /; are presented in Fig. 3.
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Fig. 4. Effect of Prandtl numbers on unsteadiness of thermograv-
itational convection, Solid line: velocity component Vs dashed
line: Vy; @: temperature. Numbers 1, 2, and 3 correspond to
Prandtl numbers Pr = 8.8, 0.88, and 0.224; Gr =0.22:10% = 4.

As the results of the calculation show, regardless of the height of the crystallizing cavity the entire pro-
cess of thermal convection can be divided into two stages: a stage of acceleration of the melt and one of slow-
ing of the rate of convective motion.

It was noted earlier that a spatial reorganization of the temperature field takes place in the initial period
of solidification. This same period is characterized by the rise of the convection velocities. The duration and
the maximum value of the velocities in the acceleration stage essentially depend on the relative height 15 of the
cavity, As it increases the intensity of the motion grows with a simultaneous increase in the duration of the
acceleration of the melt. It should be noted that the development of the convective motion in the ascending and
descending flows does not take place in the same way. While the motion develops almost instantly in the region
near the wall, in the axial part of the cavity it develops with a certain delay.

The second stage, more prolonged, generally speaking, is characterized by a decrease in the velocity
of the motion. The results of the calculation show that the total duration of the convective motion of the liquid
core of the ingot is entirely due to the presence of overheating in the melt (Fig. 3). With the removal of the
overheating the intensity of the thermal convection decreases, asymptotically approaching zero.

The effect of the Prandtl number on the nature of the thermal convection is represented in Fig. 4. As
the results of the calculation show, variation in the Prandtl number in the range from Pr = 0.224 to Pr = 8.8
has a weak effect on the maximum velocities reached by the melt and acts mainly.on the duration of the ther-
mal convection.

An analysis of the initial equations shows that in the case of small Prandtl numbers (Pr <«1) the equation
of heat and mass transfer can be linearized on account of the convective term while the equation of motion can
be linearized on account of the convective and viscous terms. In this case the velocities of thermal convection
depend on the Rayleigh number, while the mechanism of molecular heat conduction affects the temperature

distribution.

For larger Prandtl numbers one can neglect the local time derivative in the equations of motion and heat
transfer. A guasisteady regime of thermal convection occurs in this case. The determining criteria of the
intensity of the convective motion become the Grashof number and the convective terms, which introduce the
essential nonlinearity into the process of thermal convection.

It should be noted that the conclusion drawn in [1] that the regime of thermal convection is "quasisteady"
is confirmed by the results of the present work only for large Prandtl numbers.
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NOTATION

T, time; T, temperature of melt; Ty, initial temperature; T, crystallization temperature of liquid; ¥,
stream function; 5, curl of velocity; v, coefficient of kinematic viscosity; a, coefficient of thermal diffusivity;
X,, characteristic size of region; ég, unit vector of On; axis; 5, relative height of cavity; e;, relative width of
liquid zone (i =1, 3); wp, coordinate grid of region; h, distance between nodes of coordinate grid; A, time
multiplier; Ty — T, characteristic temperature difference; p = pi§, characteristic pressure; R = PrGr, Ray-
leigh number; 7; = xi/}’io, dimensionless coordinates (i =1, 3); ® = (T ——TC)/ (Tq—Te), dimensionless temper-
ature; 7 =p/p, dimensionless pressure; Fo = 7/7, dimensionless time (Fourier number); 0, = »/%,, character~
istic velocity; ¥ =X}/a, characteristic time; Pr =v/a, Prandtl number; Gr = q(T, —T¢)x3/v?, Grashof number.
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UNSTEADY CONVECTIVE HEAT TRANSFER
IN POTENTIAL FLOW

P. 8. Chernyakov UDC 536.28

Analytical relations are obtained for the unsteady temperature field in potential flow over a
flat plate and a cylinder.

Works [1-3] have examined stationary forced convection in potential flow of a ligquid over bodies.

The present paper determines the unsteady temperature fields in longitudinal flow over a flat plate with
boundary conditions of the first and second kinds, with and without allowance for thermal radiation and motion
of the cylinder in the flow with boundary conditions of the first kind. This type of problem is described by the
equations for the fluid temperature T, the velocity potential ¢, and the pressure p:

Ag =0, 1)
ar d @)= aAT 2
"5 + (grad T, grad @)= aAT, (2)
— p,—0.5p(grad P —p 22 — 0@, 7 3
p=py— 0.5p(grad @) —p — (g G

and injtial and boundary conditions on the body surface
% _y, @)

on

(JC, 0)= To (x)’ TI—; = f(xsv t)' A — - g (xs’ t),
€S on Yes (5)
A _(91 = g {(T% T4 T
on "x’es“ ( es ™ =) . =Te

We assume that the thermophysical properties of the liquid are independent of temperature and pressure
and that a similarity transformation xj =vay; has been derived which results in the coefficient of AT reducing
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